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There is a growing quest for the construction of supramolecular
architectures associating several chemical functionalities in a
spatially ordered manner. Directional electron transport is a key
property when electrical activation of such molecular devices is
requested. Knowing quantitatively how the system responds to
electrical excitation is then an essential objective which opens
up fundamental questions about the mechanism and dynamics of
electron transport and of the electron-transfer activation of the
chemical functionalities included in the structure. Immobilization
of redox centers may be achieved by adsorptive or chemical
attachment of monolayers on electrode surfaces or by entrapment
in polymer or gel coatings in which other functionalities may
also be included.1 Although much has been learned from the
construction and analysis of such systems, their spatial structure
is generally not sufficiently defined or known to allow a full
comprehension of the laws that govern their dynamics. An
attractive alternative is to take advantage of the properties of
biomolecules and derivatives in terms of molecular recognition
for constructing spatially ordered systems. Among them, enzymes
offer in addition a wealth of catalytic properties that may be
triggered electrically provided that the system contains at least
one redox enzyme. In most cases, direct electron transfer between
the redox enzyme and the electrode is precluded by steric
hindrance and/or denaturation. A mediator, serving as artificial
cosubstrate, is therefore required to shuttle the electrons between
the electrode and the enzyme. While several procedures have
been proposed to immobilize redox enzymes and “wire”2a them
to the electrode,2 there have been very few attempts to analyze
the dynamics of such systems and test the enzymatic activity once
the attachment has been completed.2d In this respect, a strategy
based on antigen-antibody interactions has been shown to fully
preserve the activity of the enzyme in monolayer as well as in
multilayer structures.2d These systems lend themselves to a
quantitative cyclic voltammetric analysis of their dynamics.
However, one drawback of these electrodes is that the mediator
is not attached to the structure. There is a need of more integrated
systems including the electron carrier which dynamics could be
quantitatively analyzed.

We have found that making use of the biotin-avidin interaction
in place of antigen-antibody interactions and of the presence of
four noncooperative binding sites of avidin allows the construc-
tion, on glassy carbon (GC) electrodes, of the first example of a
fully characterized monolayer where the enzyme and the electron

carrier are simultaneously immobilized.3,4 These electrodes are
thus good models for investigating the factors governing the
communication between electrical signal and biomolecules.
Although this is not the primary objective of the present study,
knowledge acquired along these lines on redox enzyme systems
may be integrated in strategies for preparative-scale and biosensor
applications.5 A large variety of avidin and biotin derivatives
are available thanks to their use in protein and enzyme assays,6

thus leading to a facile generalization to other biomolecules and
electron carriers.

The procedure we used for attaching both the enzyme and the
cosubstrate, taking as example glucose oxidase and ferrocene, is
sketched in Scheme 1. The long-chain biotin was first grafted,
according to the recently describedN-hydroxysuccinimide tech-
nology,7 by reacting directly the GC surface with a chloroform
solution of the commercially availableO-2-[((N-hydroxysuccin-
imidyl)ethyloxy)carbonyl], O ′-2-(N-biotinamidoethyl) poly-
(ethylene glycol) (NHS-CO2-PEG-Biotin, average molecular
weight 3500, average number of O-CH2CH2 units 69).The glucose
oxidase conjugated avidin was then attached, thanks to its strong
affinity for the biotin moieties.

Finally, the long-chain biotinylated ferrocene derivative,
O-[(2-N-(â-ferrocenylethylamino)ethyloxy)carbonyl],O ′-2-(N-biotin-
amidoethyl)poly(ethylene glycol) (Scheme 1) was bound to the
remaining vacant sites of the monolayer of glucose oxidase
conjugated avidin. This ferrocene derivative was obtained from
the reaction of FcCH2CH2NH2 with NHSCO2-PEG-Biotin as
depicted in the Supporting Information. The synthesis of a series
of similar biotin derivatives has been recently reported.8 Up to
10-10 mol/cm2 may be deposited from a 10 mM chloroform
solution of NHS-CO2-PEG-Biotin.7 It is tempting to attach the
maximal amount of the biotin derivative on the surface in the
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hope of depositing a maximal amount of glucose oxidase on the
electrode. However, successful co-immobilization leading to
stable electrodes (less than 1.5% loss in the catalytic activity per
day over 1 week) was obtained only by grafting not more than
ca. 10-11 mol/cm2. Electrodes obtained according to this opti-
mized procedure should be carefully washed before use, including
immersion in a phosphate buffer for periods as long as 20 h. With
larger amounts of the biotin derivative deposited on the electrode,
as for example with 10-10 mol/cm2, the catalytic activity rapidly
decreases with time (35% overnight). Under such conditions,
the amount of biotin moieties on the surface is in large excess
over the bound glucose oxidase conjugated avidins. Exposure
of the electrode thus obtained to a solution of the biotinylated
mediator does result in its incorporation in the enzyme layer.
However, as soon as the electrode is washed and transferred into
a test solution with no biotinylated mediator present, the attached
biotinylated ferrocene is displaced by the excess biotins present
on the electrode surface, owing to the reversibility of avidin-
biotin complex formation (for more details see the Supporting
Information).6,9

The cyclic voltammetry (Figure 1) of the optimized enzyme
electrodes shows that the addition of glucose gives rise to a strong
catalytic enhancement of the current10 leading to S-shaped
curves.11 In the absence of glucose, integration of the surface
reversible wave (Figure 1a) provides an estimate12 of the surface
concentration of the attached ferrocene mediator, (6( 3)× 10-12

mol/cm2. In the presence of glucose (Figure 1b), the plateau
current,ip, is expected to obey the following equation based on

the mechanism depicted in Scheme 2,

S is the electrode surface area,ΓE is the surface concentration of
enzyme, [Fc] is the total where concentration of ferrocene and
ferrocenium in the monolayer, and [G] is the glucose concentra-
tion. When ferrocene methanol is introduced in the solution, the
catalytic current becomes at least 20 times larger. The effect of
the attached mediator may thus be neglected as compared to the
effect of the mediator in solution. Sincek3 (1.2× 107 M-1 s-1),
k2 (750 s-1), andkred (1.1× 104 M-1 s-1) for this solution mediator
are known, the value ofΓE, 3.5 × 10-12 mol/cm2, ensues,
indicating that, practically, all of the enzyme is active by
comparison with antigen-antibody monolayers.4l It follows that
there is a little less than 2 ferrocenes per glucose oxidase, in
average, in the monolayer. When the FcCH2CH2NHCO2-PEG-
Biotin mediator is used in solution instead of ferrocene methanol,
a smaller value ofk3, 6 × 105 M-1 s-1, is found.

Coming back to the experiments where the enzyme electrode
is introduced in a solution where no homogeneous mediator has
been added, Figure 1c shows the variation of the plateau current
with the concentration of glucose. Sincek3[Fc] is much smaller
than k2, its value, 13( 0.5 s-1, is obtained from the intercept
andkred, (9 ( 4)× 103 M-1 s-1, is obtained from the slope. The
fact that this last value agrees with the value found in solution
studies13 confirms that functioning of the enzyme in the monolayer
has not been significantly affected by the immobilization proce-
dure. Assuming that the thickness of the layer within which the
ferrocene moiety may move is twice the length of PEG 3500 (250
Å) leads to [Fc]≈ 10-3 M and k3 ≈ 104 M-1 s-1.

As discussed earlier,14 there are three main steps in the reaction
of the ferrocene mediators with glucose oxidase, namely, diffusion
to the surface of the enzyme, adequate positioning at the bottom
of the pocket connecting the prosthetic group to the enzyme
surface, and electron transfer from the prosthetic group. The
second step is rate determining with small ferrocenes.14 This is
also the case with the long-chain mediator when dispersed in the
solution. The decrease ink3 (by a factor of 17 as compared to
ferrocene methanol) then results from the steric obstacle created
by the long chain for reaching the bottom of the pocket. The
further decrease ink3 (by a factor of 60), observed when the long-
chain mediator is immobilized, is likely to result from an increase
of viscosity due to the entanglement of the various long chains
present in the monolayer, making the diffusion to the enzyme
surface rate determining.

This application of the avidin-biotin technology may be
generalized to other enzymes and cosubstrates and to the step-
by-step construction of ordered multilayer systems including the
enzyme and a mediator attached by an arm of tailored length. It
offers a friendly environment to the enzyme. Each step of the
immobilization procedure can be carefully controlled leading to
catalytic devices that are amenable to quantitative analysis
through, e.g., cyclic voltammetry.

Supporting Information Available: Experimental details (4 pages,
print/PDF). See any current masthead page for ordering information and
Web access instructions.
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Figure 1. Cyclic voltammetry of the monolayer glucose oxidase-
ferrocene electrode (see text) in the absence (a) and presence of 0.5 M
glucose (b) phosphate buffer (pH) 8). Scan rate: 0.04 V/s. Tempera-
ture: 25 °C. (c) Variation of the plateau current with the glucose
concentration.
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